Browsing by Subject "technetium"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Gamma scintigraphy and biodistribution of 99mTc-cefotaxime sodium in preclinical models of bacterial infection and sterile inflammation(John Wiley and Sons Ltd, 2016) Ilem-Ozdemir D.; Asikoglu M.; Ozkilic H.; Yilmaz F.; Hosgor-Limoncu M.; Ayhan S.99mTc-cefotaxime sodium (99mTc-CEF) was developed and standardized under varying conditions of reducing and antioxidant agent concentration, pH, radioactivity dose, and reducing agent type. Labeling studies were performed by changing the selected parameters one by one, and optimum labeling conditions were determined. After observing the conditions for maximum labeling efficiency and stability, lyophilized freeze dry kits were prepared accordingly. Simple method for radiolabeling of CEF with 99mTc has been developed and standardized. Labeling efficiency of 99mTc-CEF was assessed by both radio thin-layer chromatography and radio high-performance liquid chromatography and found higher than 90%. The labeled compound was found to be stable in saline and human serum up to 24 h. Two different freeze dry kits were developed and evaluated. Based on the data obtained from this study, both products were stable for 6 months with high labeling efficiency. The prepared cold kit was found sterile and pyrogen free. The bacterial infection and sterile inflammation imaging capacity of 99mTc-CEF was evaluated. Based on the in vivo studies, 99mTc-CEF has higher uptake in infected and inflamed thigh muscle than healthy thigh muscle. Cefotaxime sodium (CEF) was successfully labeled with 99mTc from newly developed instant kit. Radiochemical purity was found greater than 90% and the labeled compound was stable in human serum during incubation period up to 24 h. The improved kit was found to be sterile, pyrogen free and stable up to 6 months. According to gamma scintigraphy studies, 99mTc-CEF showed a higher uptake in bacterial infected and sterile inflamed muscle than healthy thigh muscle. © Copyright 2016 John Wiley & Sons, Ltd.Item Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system(Elsevier Ltd, 2017) Ucar E.; Teksoz S.; Ichedef C.; Kilcar A.Y.; Medine E.I.; Ari K.; Parlak Y.; Sayit Bilgin B.E.; Unak P.Nanostructured lipid carriers (NLCs) are the new generation of solid lipid drug delivery systems. Their suitability as contrast agents for gamma scintigraphy is an attracting major attention. The aim of current study was to prepare surface modified nanostructured lipid carrier system for paclitaxel (PTX) with active targeting and imaging functions. In accordance with the purpose of study, PTX loaded nanostructured lipid carriers (NLCs) prepared, modified with a folate derivative and radiolabeled with technetium-99 m tricarbonyl complex (99 mTc(CO)3 +). Cellular incorporation ratios of radiolabeled nanoparticles (99 mTc(CO)3-PTX-NLC) were investigated in vitro on three cancer cell lines. Additionally in vivo animal studies conducted to evaluate biological behavior of 99 mTc(CO)3-PTX-NLC on female Wistar Albino rats. Biodistribution results showed that the folate derivative modified 99 mTc(CO)3-PTX-NLC had considerably higher uptake in folate receptor positive organs. The data obtained from present study could be useful in the design of biodegradable drug carriers of PTX and folate receptor based tumor imaging agents. © 2016 Elsevier LtdItem Evaluation of new 99mTc(CO)3 + radiolabeled glycylglycine In Vivo(Bentham Science Publishers, 2019) Şenışık A.M.; İçhedef Ç.; Kılçar A.Y.; Uçar E.; Arı K.; Parlak Y.; Bilgin E.S.; Teksöz S.Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals. © 2019 Bentham Science Publishers.