Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
Turkish
Turkish
No Thumbnail Available
Date
Authors
Gül, C
Albayrak, S
Çömez, N
Durmus, H
Journal Title
Journal ISSN
Volume Title
Publisher
1302-0900
Abstract
GAZI UNIV
Description
Keywords
Mg alloys are preferred in automotive, aircraft, aerospace and communication industries due to their low specific gravity and high strength. WE series is a series of Mg alloys containing Mg, Y, Nd, rare earth elements, and although the creep strength is good for this alloy series, the wear resistance is open to improvement. The aim of this study is to develop coatings that can increase the wear resistance of WE43 Mg alloys, which have a high potential for use due to their specific gravity, by using a method that can be easily applied in the industry. For this purpose, using the cold spray coating method, magnesium alloys, whose surfaces are highly active, are provided to be coated without oxidation and wear resistance is improved. In the study carried out, WE43 Mg alloys, which roughen the surfaces by fine sandblasting process, were used with cold spray method, using powders containing Al/Zn/Al2O3 and Zn/Al2O3 and trade names DYMET K-20-11 and DYMET K-00-11, respectively, using N2 shielding gas at 500 degrees C. 6 g/min for powders delivered to supersonic speeds under the atmosphere. The powder was sprayed onto the substrates using the feed rate. Morphological analysis of the coated and uncoated samples with different contents were examined by SEM, XRD methods, the coating thicknesses were measured with SEM images taken from the section, and the percentages of the elements were determined by EDS analysis. In addition, ball-on disc wear tests were performed to examine the wear performance and volume losses were evaluated. As a result, the wear loss of WE43 alloys was reduced by approximately 40% compared to the uncoated condition, thanks to the cold spray coatings.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6870
Collections
Web of Science Koleksiyonu
Full item page