Metasezgisel yöntemlerle öznitelik sayısını azaltarak diyabetin erken dönemde tespiti

dc.contributor.authorTuğberk Özmen
dc.contributor.authorÜZEYİR KUZU
dc.contributor.authorYUCEL KOCYIGIT
dc.contributor.authorHaldun Sarnel
dc.date.accessioned2025-04-14T05:51:55Z
dc.date.available2025-04-14T05:51:55Z
dc.date.issued2023
dc.description.abstractDiyabet dünya çapında yaygın olarak görülen metabolik bir hastalıktır. Dünya genelinde her geçen yıl diyabet hastalığına yakalanan kişi sayısının artması beklenmektedir. Bu da hem kişilerin yaşam konforları hem de sağlık sistemi için olumsuz bir etki demektedir. Bu açıdan hastalığın erken dönemde teşhis edilmesi önem taşımaktadır. Teşhis amacıyla kullanılan verilerin yüksek boyutlu olması hesaplamanın maliyeti ve süresi üzerinde olumsuz etkiye sahiptir. Bunun önüne geçmek için, teşhis için en değerli olan özniteliklerin seçilmesi önem arz etmektedir. Bu çalışmada UCI (UCI Machine Learning Repository) veri deposundaki örnekler kullanılarak, Salp Sürü Algoritması, Yapay Arı Kolonisi Algoritması, Balina Optimizasyon Algoritması ve Karınca Kolonisi Algoritması kullanılarak öznitelik seçimi yapılmıştır. Seçilen özniteliklerin değerlendirilmesi için k-En Yakın Komşuluk (KNN), Naive Bayes (NB), Destek Vektör Makinası (DVM) ve Yapay Sinir Ağları (YSA) yöntemleri kullanılarak doğruluk, duyarlılık ve belirlilik parametreleri hesaplanmıştır. Diyabet hastası olma olasılığı için yapılan hesaplamalarda k-En Yakın Komşuluk yöntemiyle %99.04 doğruluk oranı elde edilmiştir.
dc.identifier.DOI-ID10.5505/pajes.2022.82610
dc.identifier.urihttp://hdl.handle.net/20.500.14701/54918
dc.language.isoTürkçe
dc.subjectEndokrinoloji ve Metabolizma
dc.subjectGenel ve Dahili Tıp
dc.subjectBiyokimya ve Moleküler Biyoloji
dc.subjectİstatistik ve Olasılık
dc.titleMetasezgisel yöntemlerle öznitelik sayısını azaltarak diyabetin erken dönemde tespiti

Files