Analysis of Transverse Vibration in a Concentrated Mass Rayleigh Pipe
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
The dynamic behavior of pipelines subjected to additional masses is crucial for optimizing the design and reliability of engineering systems, particularly in offshore and industrial applications. This study investigates the effect of slenderness on the dynamic response of a pipe with one or more additional masses placed at different positions along its length, considering the symmetry of the system in mass distribution. The aim is to analyze how mass placement influences vibration characteristics under fluid–structure interaction (FSI) conditions. The pipe is modeled as a Rayleigh beam, and the governing equations of motion are derived using Hamilton’s principle while preserving the inherent symmetry of the system. A non-dimensionalized approach is employed to ensure broad applicability across different geometric and material configurations. The vibration frequencies are obtained using the Galerkin method (GM) and validated via a two-way FSI technique, integrating computational fluid dynamics (CFDs) and structural mechanics using ANSYS 2022 software. The results demonstrate the relationship between the concentrated mass ratio and vibration frequency for the first three modes, highlighting the influence of slenderness ratio on system stability. These findings provide valuable insights for the engineering design of pipeline systems subjected to dynamic loading. © 2025 by the author.