Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Atmaca, H
Uzunoglu, S
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
JOHN LIBBEY EUROTEXT LTD
Description
Keywords
Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate Ecteinascidia turbinata, has been shown to have antitumor effects. In this study, we assessed the possible anti-angiogenic effects of trabectedin on human umbilical vein endothelial cells (HUVECs) and breast cancer cell lines. An XTT cell viability assay was used to determine cytotoxicity. A scratch assay was used to detect the migration of cells after trabectedin treatment. Angiogenic cytokine profiles of breast cancer cell lines, before and after treatment with trabectedin, were investigated using an angiogenesis antibody array. Changes in mRNA expression levels of VEGF were evaluated using qRT-PCR. Trabectedin inhibited the viability of HUVECs and breast cancer cells in a concentration-and time-dependent manner. The migration of both HUVECs and breast cancer cells was suppressed by trabectedin treatment. Angiogenic cytokines which are known to regulate tumorigenicity and angiogenesis, such as GM-CSF, IGFBP-2, VEGF, and uPA, were inhibited, while several anti-angiogenic cytokines such as TIMP-1 and Serpin E1were induced in breast cancer cells. Furthermore, expression levels of VEGF mRNA were inhibited in all breast cancer cells tested. Although additional studies are needed to elucidate the molecular mechanisms underlying the anti-angiogenic activity of trabectedin, our results suggest that trabectedin may act as a potential anti-angiogenic agent in breast cancer cells.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6607
Collections
Web of Science Koleksiyonu
Full item page