Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Gülkaya, B
Gökçek, T
Ates, Y
Boynuegri, AR
Journal Title
Journal ISSN
Volume Title
Publisher
1532-5008
Abstract
TAYLOR & FRANCIS INC
Description
Keywords
Recently, the transition from conventional to renewable energy sources (RESs), from internal combustion engine vehicles to electric vehicles (EVs), and from the main grid to microgrids (MGs) are essential goals to both reduce greenhouse gas emissions and ensure the stability of power systems. However, the transitions cause new concerns in the grid including technical challenges and financial viability. This study examines the RES-based MG under realistic conditions considering the uncertainty in fleet size of EVs, emergency generator capacity, solar irradiation, and wind speed in island mode. The work aims to provide effective solutions including conventional methods alongside today's trend namely doubly fed electrical generators (DFIG), vehicle-to-grid mechanism (V2G), maximum power point tracking controller (MPPT), voltage source inverter (VSI) with high switching frequency for technical challenges, and virtual synchronous generator (VSG) mechanism for financial viability. The paper provides a guide for resizing the emergency generators capacity depending on system instability. The observations verify that the control mechanisms reinforce the system to remain stable by decreasing the range of frequency fluctuation from 3.1 to <0.05 Hz, the peak point of frequency from 51.8 to 50.05 Hz, and the emergency generator capacity from 0.7605 to 0.3420 MVAr at MATLAB and Simulink.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6955
Collections
Web of Science Koleksiyonu
Full item page