On Weak and Strong Convergence of an Explicit Iteration Process for a Total Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space

dc.contributor.authorKiziltunc, H
dc.contributor.authorPurtas, Y
dc.date.accessioned2024-07-18T11:53:53Z
dc.date.available2024-07-18T11:53:53Z
dc.description.abstractIn this paper, we introduce a new class of Lipschitzian maps and prove some weak and strong convergence results for explicit iterative process using a more satisfactory definition of self mappings. Our results approximate common fixed point of a total asymptotically quasi-I-nonexpansive mapping T and a total asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.
dc.identifier.issn0354-5180
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/5957
dc.language.isoEnglish
dc.publisherUNIV NIS, FAC SCI MATH
dc.subjectFIXED-POINTS
dc.subjectTHEOREM
dc.titleOn Weak and Strong Convergence of an Explicit Iteration Process for a Total Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space
dc.typeArticle

Files