Surface and Tribological Properties of Powder Metallurgical Cp-Ti Titanium Alloy Modified by Shot Peening

No Thumbnail Available

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The present study reveals for the first time the dry sliding wear behavior of a powder metallurgical pure titanium alloy (Cp-Ti) modified by shot peening. Cp-Ti samples were manufactured via powder metallurgy, and then their surface and subsurface features were modified using a custom-made, fully automated shot-peening system. The texture isotropy rate and the highest orientation angle of the shot-peened samples were 71.5% and 36 degrees, respectively. The Abbott curves of the shot-peened surfaces revealed that the most common areal roughness value was 5.177 mu m, with a frequency of 8.1%. Shot-peened surfaces exhibited an similar to 20% lower wear rate than unpeened surfaces under dry sliding wear, whereas the coefficient of friction was the same for both surfaces. Micro-ploughing, micro-cutting, oxidation, and three-body abrasion wear mechanisms were observed on the shot-peened and unpeened surfaces. High resolution 3D surface topographies of worn unpeened and shot-peened surfaces revealed micro-scratches and inhomogeneities along wear tracks, which are indicative of three-body abrasion mechanisms during contact. In addition, vertical and horizontal microcracks were visible just beneath the wear track, suggesting a clear indication of plastic deformation during contact. The cross-sectional hardness maps of shot-peened samples revealed the formation of a work-hardened surface layer with shot peening, which improved the wear resistance. These findings support that shot peening can be a useful tool to modify the surface and tribological properties of powder metallurgical Cp-Ti alloys.

Description

Citation