Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Hamurcu, M
Khan, MK
Pandey, A
Ozdemir, C
Avsaroglu, ZZ
Elbasan, F
Omay, AH
Gezgin, S
Journal Title
Journal ISSN
Volume Title
Publisher
2190-572X
Abstract
SPRINGER HEIDELBERG
Description
Keywords
The role of exogenous nitric oxide (NO) application in alleviating drought stress responses by enhancing the antioxidant activities in plants is well established for several species. However, none of the studies reported its role in protecting the watermelon genotypes from drought stress. In this study, we aimed to observe the effect of NO application on the physiological and biochemical responses of the two watermelon (Citrullus lanatus var. lanatus) genotypes grown under drought stress conditions by treating the plants with 15% polyethylene glycol 6000 (PEG 6000) and 100 mu M sodium nitroprusside (SNP), which is a NO donor in Hoagland solution. Among the two genotypes, one genotype, KAR 98 was drought tolerant; while another, KAR 147 was drought sensitive. Drought stress showed a decrease in the growth parameters of both the genotypes; however, as expected it was higher in the susceptible genotype, KAR 147. NO application could not prevent the reductions in the growth parameters; however, it reduced the increment in malondialdehyde (MDA) content caused by the drought stress in both watermelon genotypes. Moreover, while drought stress condition reduced the ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and peroxidase (POX) activities in both genotypes, NO + PEG application increased the APX activity in the tolerant genotype, KAR 98. Though the obtained results does not show the direct involvement of NO in increasing drought tolerance of watermelon plants, the increase in the APX antioxidant enzyme activity on NO application under drought stress confirmed its role in protecting the watermelon genotypes from the oxidative damage caused by the drought stress. Moreover, it can be concluded that the effect of NO application on watermelons' responses towards drought stress condition may vary according to the specific genotypes. As to date none of the studies reported the effect of NO application on the antioxidant activity of watermelon genotypes under drought stress, the present study may provide information about the mechanisms that can be focused to improve drought stress tolerance of watermelon genotypes.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/7110
Collections
Web of Science Koleksiyonu
Full item page