Quantum chemical calculation (electronic and topologic) and experimental (FT-IR, FT-Raman and UV) analysis of isonicotinic acid N-oxide

dc.contributor.authorKaraca, C
dc.contributor.authorAtac, A
dc.contributor.authorKarabacak, M
dc.date.accessioned2024-07-18T11:46:20Z
dc.date.available2024-07-18T11:46:20Z
dc.description.abstractIn this work, the molecular conformation, vibrational and electronic analysis of isonicotinic acid N-oxide (iso-NANO) were presented in the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. The geometry optimization and energies associated possible two conformers (Rot-I and Rot-II) were computed. The vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The obtained structures were analyzed with the Atoms in Molecules (AIMs) methodology. The computational results diagnose the most stable conformer of iso-NANO as the Rot-I form. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (OPDOS) diagrams analysis for the most stable conformer (Rot-I) were calculated using the same method. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated. As a result, the optimized geometry and calculated spectroscopic data show a good agreement with the experimental results. (C) 2014 Elsevier B.V. All rights reserved.
dc.identifier.issn1386-1425
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/2661
dc.language.isoEnglish
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.subjectDENSITY-FUNCTIONAL THEORY
dc.subjectINITIO HARTREE-FOCK
dc.subjectVIBRATIONAL-SPECTRA
dc.subjectNICOTINIC-ACID
dc.subjectMOLECULAR-STRUCTURE
dc.subjectDIMERIC STRUCTURES
dc.subjectDFT CALCULATIONS
dc.subjectAB-INITIO
dc.subjectSPECTROSCOPIC CHARACTERIZATION
dc.subjectFORCE-FIELDS
dc.titleQuantum chemical calculation (electronic and topologic) and experimental (FT-IR, FT-Raman and UV) analysis of isonicotinic acid N-oxide
dc.typeArticle

Files