Orthogonal stability of an additive-quadratic functional equation in non-archimedean spaces

dc.contributor.authorLee J.R.
dc.contributor.authorPark C.
dc.contributor.authorAlaca C.
dc.contributor.authorShin D.Y.
dc.date.accessioned2025-04-10T11:14:57Z
dc.date.available2025-04-10T11:14:57Z
dc.date.issued2012
dc.description.abstractUsing the fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive-quadratic functional equation, for all x, y with x ⊥ y, in non-Archimedean Banach spaces. Here ⊥ is the orthogonality in the sense of Rätz. © 2012 EUDOXUS PRESS, LLC.
dc.identifier.urihttp://hdl.handle.net/20.500.14701/50622
dc.titleOrthogonal stability of an additive-quadratic functional equation in non-archimedean spaces
dc.typeArticle

Files