Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Erzin, Y
Rao, BH
Patel, A
Gumaste, SD
Singh, DN
Journal Title
Journal ISSN
Volume Title
Publisher
1290-0729
Abstract
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Description
Keywords
The knowledge of soil electrical and thermal resistivities is essential for several engineering projects such as laying of high voltage buried power cables, nuclear waste disposal, design of fluidized thermal beds, ground modification techniques etc. This necessitates precise determination of these resistivities, and relationship between them, which mainly depend on the soil type, its origin, compaction density and saturation. Such a relationship would also be helpful for determining one of these resistivities, if the other one is known. With this in view, efforts were made to develop artificial neural network (ANN) models that can be employed for estimating the soil electrical resistivity based on its soil thermal resistivity and the degree of saturation. To achieve this, measurements of electrical and thermal resistivities were carried out on different types soils compacted at different densities and moisture contents. These models were validated by comparing the predicted results vis-A-vis those obtained from experiments. The efficiency of these ANN models in predicting the soil electrical resistivity has been demonstrated, if its thermal resistivity is known. These ANN models are found to yield better results as compared to the generalized relationships proposed by the earlier researchers. (C) 2009 Elsevier Masson SAS. All rights reserved.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/7214
Collections
Web of Science Koleksiyonu
Full item page