Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Ilhan, M
Keskin, IÇ
Çatalgöl, Z
Samur, R
Journal Title
Journal ISSN
Volume Title
Publisher
1546-542X
Abstract
WILEY
Description
Keywords
Barium tantalate phosphors activated with different concentrations of Nd3+ ion were synthesized via conventional solid state reaction method. The synthesized ceramic powders were characterized by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), laser diode (LD) excited near infrared (NIR) photoluminescence and X-ray induced radioluminescence (RL) analyses. In XRD results, Nd3+ doped BaTa2O6 structure with tetragonal tungsten bronze (TTB) symmetry was observed to continue up to 10 mol%. In the examination of ceramic powders by SEM, grain size decreased with the increasing doping concentration. By using laser diode excited NIR photoluminescence of BaTa2O6:Nd3+ phosphor exhibited characteristic emissions at 877, 1080, and 1376 nm wavelengths due to F-4(3/2) I-4(11/2), F-4(3/2) I-4(11/2), and F-4(3/2) I-4(11/2) band transitions respectively. Scintillation properties of Nd3+ doped samples from UV to near-IR spectral region were carried out by the radioluminescence analysis. NIR and scintillation emissions initially increased by the doping concentration, and then decreased due to concentration quenching effect.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6783
Collections
Web of Science Koleksiyonu
Full item page