Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Erzin, Y
Ecemis, N
Journal Title
Journal ISSN
Volume Title
Publisher
0941-0643
Abstract
SPRINGER LONDON LTD
Description
Keywords
In this study, an artificial neural network (ANN) model was developed to predict the cone penetration resistance of silty sands. To achieve this, the data sets reported by Ecemis and Karaman, including the results of three high-quality field tests, namely piezocone penetration test, pore pressure dissipation tests, and direct push permeability tests performed at 20 different locations on the northern coast of the Izmir Gulf in Turkey, have been used in the development of the ANN model. The ANN model consisted of three input parameters (relative density, fines content, and horizontal coefficient of consolidation) and a single output parameter (normalized cone penetration resistance). The results obtained from the ANN model were compared with those obtained from the field tests. It is found that the ANN model is efficient in determining the cone penetration resistance of silty sands and yields cone penetration resistance values that are very close to those obtained from the field tests. Additionally, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to examine the performance of the ANN model developed. The performance level attained in the ANN model shows that the ANN model developed in this study can be employed for predicting cone penetration of silty sands quite efficiently.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6757
Collections
Web of Science Koleksiyonu
Full item page