Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Derse, C
el Baghdadi, M
Hegazy, O
Sensoz, U
Gezer, HN
Nil, M
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
IEEE
Description
Keywords
Anomaly detection in automotive systems has been a strong challenge: first, during the development phase, then after the manufacturing approval in ramp-up production and finally during the vehicles life cycle management. The numerous sensors positioned inside a vehicle generate more than a gigabyte of data at each second timeframe. These sensors are connected through the vehicle network, which comprises Electronic Control Units (ECUs) and Controller Area Network (CAN) buses. Each ECU gets input from its sensors, executes specific instructions and aims to monitor the vehicle's normal state detecting any irregular action corresponding to its observed behavior. The aggregator of all sensor data and control actions detects the anomalies in vehicle systems, which poses a multi-source big data problem. Detecting anomalies during manufacturing has turned out to be another research challenge after the introduction of Industry 4.0. This paper presents a performance comparison of different anomaly detection algorithms on time series originating from automotive sensor data. Interquartile range, isolation forest, particle swarm optimization and k-means clustering algorithms are used to detect outlier data in the study.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/7377
Collections
Web of Science Koleksiyonu
Full item page