Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Kazaz, M
Ugurlu, HH
Ozdemir, A
Journal Title
Journal ISSN
Volume Title
Publisher
1028-6276
Abstract
SHIRAZ UNIV
Description
Keywords
V. Dannon showed that spherical curves in E-4 can be given by Frenet-like equations, and he then gave an integral characterization for spherical curves in E-4. In this paper, Lorentzian spherical timelike and spacelike curves in the space time are shown to be given by Frenet-like equations of timelike and spacelike curves in the Euclidean space E-3 and the Minkowski 3-space R-1(3). Thus, finding an integral characterization for a Lorentzian spherical R-1(4)-timelike and spacelike curve is identical to finding it for E-3 curves and R-1(3)-timelike and spacelike curves. In the case of E-3 curves, the integral characterization coincides with Dannon's. Let {T, N, B} be the moving Frenet frame along the curve alpha(s) in the Minkowski space R-1(3). Let alpha(s) be a unit speed C-4-timelike (or spacelike) curve in R-1(3) so that alpha(s) = T. Then, alpha(s) is a Frenet curve with curvature kappa(s) and torsion tau(s) if and only if there are constant vectors a and b so that (i) T'(s)= kappa(s){acos xi(s)+bsin xi(s) + integral(s)(0) cos[xi(s)-xi(delta)]T(delta)kappa(delta)d delta}, T is timelike, (ii) T'(s) = kappa(s) {ae(xi) + be(-xi) + integral(s)(0) cosh (xi(delta)T(delta)kappa(delta)d delta} N is timelike, where xi(s)= integral(s)(0)tau(delta)d delta.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6611
Collections
Web of Science Koleksiyonu
Full item page