Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Bicakci, S
Citak, H
Gunes, H
Coramik, M
Aydin, Y
Ege, Y
Journal Title
Journal ISSN
Volume Title
Publisher
0090-3973
Abstract
AMER SOC TESTING MATERIALS
Description
Keywords
This study attempted to determine both the presence and the appearance of the surface of a crack artificially created in a marble block without axial loading or compression by FFT analysis of ultrasonic longitudinal sound waves by scanning the surface. In such respect, the study differs from other studies in the literature. The aim of the study was to minimize marble waste by determining the most appropriate slab cut direction based on the orientation of the fracture or discontinuity within the marble block. During location-controlled scanning of the marble surface, mean longitudinal wave velocity, Young modulus, Poisson ratio and longitudinal wave velocity variation data were obtained using a V-Meter Mark IVTM ultrasonic test device. For each location, longitudinal ultrasonic velocity data was taken at 250 kHz sampling rate and 256 data points were created. Data from the computer environment were subsequently reorganized using the MATLAB software and FFT conversions for such velocity data were obtained for each location. Then, the peaks of the FFT transformation components were determined by using the Findpeaks function in MATLAB's signal processing toolbox. The number of peaks in the 5060 kHz range was determined for each location. A single difference was determined between the peak numbers at the locations within the cracked and uncracked regions. By examining the FFT graphs, it was determined that such additional peak occurring in the cracked regions appeared as a second frequency component near the dominant frequency values. Points with secondary frequency were recorded as 1, while all other points were recorded as 0 in a new matrix. Such data matrices created for each sample were examined by visualization in the form of surface graphics. Using these graphics, the orientations of discontinuities within the marble block may be determined according to the scanning surface.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/7064
Collections
Web of Science Koleksiyonu
Full item page