Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Erel-Özçevik, M
Özçevik, Y
Bozkaya, E
Bilen, T
Journal Title
Journal ISSN
Volume Title
Publisher
2378-4865
Abstract
IEEE
Description
Keywords
Warehouses, as one of the critical components of supply chain management in Industry 4.0, play an important role in e-commerce operational efficiency. A crucial prerequisite for managing warehouses is to decide the locations of products (blocks) that can maximize overall space utilization, called a Block Location Problem (BLP). BLP basically determines the product locations to achieve maximum space utilization. One of the most innovative approaches to solving BLP is the use of drones as a block transportation strategy. Existing works have been mainly focused on 2D grid models while 3D flight movement is ignored. Thus, in this paper, we develop a novel data-driven warehouse model for digital supply chain twins. For this purpose, a warehouse digital twin (WDT) architecture is defined by creating a virtual replica of a warehouse that contains the features and interactions of its real-world counterpart. Then, we formalize the BLP in a 3D grid model to decide the location of blocks in a warehouse and to provide efficient space utilization by minimizing the energy consumption of drone cargo equipment. Finally, we propose a genetic algorithm-based solution to solve the storage location assignment. Performance evaluation results demonstrate that our proposed algorithm achieves more block utilization and less energy consumption when compared to the greedy solution.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6538
Collections
Web of Science Koleksiyonu
Full item page