Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Basaran, A
Yilmaz, T
Azgin, ST
Çivi, C
Journal Title
Journal ISSN
Volume Title
Publisher
0959-6526
Abstract
ELSEVIER SCI LTD
Description
Keywords
Scarcity of natural resources and global warming increase the importance of environmental awareness while making an economic decision for any kind of industry. The dairy industry is one of the impactful areas with high labor, water and energy demand is responsible for air pollution among other sectors in the food industry. In this study, drinking milk production was investigated for milk pasteurization system and its' utilities such as steam, air, and water were studied in terms of energetic, exergetic, economic, and environmental aspects. A novel system including inductive heating (IMP) was proposed in this study with the aim of improving energy and exergy efficiencies and reducing environmental impacts. Each system was selected providing a temperature profile for high-temperature short time (HTST) for processing drinking milk. It was found that a novel design could be performed for 10 ton.h-1 milk with 44.35% less energy and less 53.27% exergy input compared to conventional application. In terms of processing cost, just replacing the heating process help reducing expenditure 3.38 EUR to 2.88 EUR per m3 milk. Apart from thermodynamic and economic performance, simplified Life Cycle Assessment (LCA) results showed that the IMP system generated smaller global warming potential (41%) and ozone layer depletion (51%) impact per m3 milk comparing the conventional system.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/7409
Collections
Web of Science Koleksiyonu
Full item page