FUZZY TRIGONOMETRIC KOROVKIN TYPE APPROXIMATION VIA POWER SERIES METHODS OF SUMMABILITY

dc.contributor.authorYavuz, E
dc.date.accessioned2024-07-18T11:47:03Z
dc.date.available2024-07-18T11:47:03Z
dc.description.abstractWe prove a fuzzy trigonometric Korovkin type approximation theorem via power series methods of summability and give a related approximation result for periodic fuzzy continuous functions by means of fuzzy modulus of continuity. An illustrative example concerning fuzzy Abel-Poisson convolution operator is also constructed.
dc.identifier.issn1223-7027
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/3222
dc.language.isoEnglish
dc.publisherUNIV POLITEHNICA BUCHAREST, SCI BULL
dc.subjectORLICZ FUNCTION
dc.subjectSEQUENCES
dc.subjectNUMBERS
dc.subjectCONVERGENCE
dc.subjectSPACE
dc.titleFUZZY TRIGONOMETRIC KOROVKIN TYPE APPROXIMATION VIA POWER SERIES METHODS OF SUMMABILITY
dc.typeArticle

Files