Fundamental theorems for the hyperbolic geodesic triangles
dc.contributor.author | H. H. UĞURLU | |
dc.contributor.author | A. ÖZDEMİR | |
dc.contributor.author | M. KAZAZ | |
dc.date.accessioned | 2024-07-24T09:13:38Z | |
dc.date.available | 2024-07-24T09:13:38Z | |
dc.date.issued | 2005 | |
dc.description.abstract | In this work, we state and prove the sine, cosine I, cosine II, sine-cosine and cotangent rules for spherical triangles on the hyperbolic unit sphere $H_0^2$ in the Lorentzian space $R_1^3$. | |
dc.identifier.issn | 1300-686X | |
dc.identifier.uri | http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/25421 | |
dc.language.iso | eng | |
dc.subject | [Fen > Temel Bilimler > Matematik] | |
dc.title | Fundamental theorems for the hyperbolic geodesic triangles | |
dc.type | Araştırma Makalesi |