Differentiating type of muscle movement via AR modelling and neural network classification

dc.contributor.authorBekir KARLIK
dc.date.accessioned2024-07-24T09:11:37Z
dc.date.available2024-07-24T09:11:37Z
dc.date.issued1999
dc.description.abstractThe aim of this study is to classify electromyogram (EMG) signals for controlling multifunction proshetic devices. An artificial neural network (ANN) implementation was used for this purpose. Autoregressive (AR) parameters of a1 , a2, a3,a4 and their signal power obtained from different arm muscle motions were applied to the input of ANN, which is a multilayer perceptron. At the output layer, for 5000 iterations, six movements were distinguished at a high accuracy of 97.6%.
dc.identifier.issn1300-0632
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/23831
dc.language.isoeng
dc.subject[Fen > Mühendislik > Mühendislik, Elektrik ve Elektronik]
dc.titleDifferentiating type of muscle movement via AR modelling and neural network classification
dc.typeDiğer

Files