On the convergence of sequences in R+ through weighted geometric means via multiplicative calculus and application to intuitionistic fuzzy numbers

No Thumbnail Available

Date

Authors

Journal Title

Journal ISSN

Volume Title

Abstract

We define weighted geometric mean method of convergence for sequences in R+ by using multiplicative calculus and obtain necessary and sufficient conditions under which convergence of sequences in R+ follows from convergence of their weighted geometric means. We also obtain multiplicative analogues of Schmidt type slow oscillation condition and Landau type two-sided condition for the convergence in particular. Besides, we introduce the concepts of (circle times) convergence (circle times) convergence ((N) over bar, p)(-)(circle times) convergence ((G) over bar, p)(-circle times) convergence for sequences of intuitionistic fuzzy numbers (IFNs) and apply the aforementioned conditions to achieve convergence in intuitionistic fuzzy number space. Examples of sequences are also given to illustrate the proposed methods of convergence.

Description

Citation