ORTHOGONAL STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN SPACES

dc.contributor.authorLee, JR
dc.contributor.authorPark, C
dc.contributor.authorAlaca, C
dc.contributor.authorShin, DY
dc.date.accessioned2024-07-18T12:02:37Z
dc.date.available2024-07-18T12:02:37Z
dc.description.abstractUsing the fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive-quadratic functional equation 2f (x+y/2) + 2f (x-y/2) = 3/2 f(x) - 1/2 f(y) + 1/2f(-y) (0.1) for all x, y with x perpendicular to y, in non-Archimedean Banach spaces. Here perpendicular to is the orthogonality in the sense of Ratz.
dc.identifier.issn1521-1398
dc.identifier.other1572-9206
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/8568
dc.language.isoEnglish
dc.publisherEUDOXUS PRESS, LLC
dc.subjectNORMED SPACES
dc.subjectBANACH-SPACES
dc.subjectTHEOREM
dc.titleORTHOGONAL STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN SPACES
dc.typeArticle

Files