ORTHOGONAL STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN SPACES
dc.contributor.author | Lee, JR | |
dc.contributor.author | Park, C | |
dc.contributor.author | Alaca, C | |
dc.contributor.author | Shin, DY | |
dc.date.accessioned | 2024-07-18T12:02:37Z | |
dc.date.available | 2024-07-18T12:02:37Z | |
dc.description.abstract | Using the fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive-quadratic functional equation 2f (x+y/2) + 2f (x-y/2) = 3/2 f(x) - 1/2 f(y) + 1/2f(-y) (0.1) for all x, y with x perpendicular to y, in non-Archimedean Banach spaces. Here perpendicular to is the orthogonality in the sense of Ratz. | |
dc.identifier.issn | 1521-1398 | |
dc.identifier.other | 1572-9206 | |
dc.identifier.uri | http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/8568 | |
dc.language.iso | English | |
dc.publisher | EUDOXUS PRESS, LLC | |
dc.subject | NORMED SPACES | |
dc.subject | BANACH-SPACES | |
dc.subject | THEOREM | |
dc.title | ORTHOGONAL STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN SPACES | |
dc.type | Article |