Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Dokuz, ME
Aydin, M
Uyaner, M
Journal Title
Journal ISSN
Volume Title
Publisher
1059-9495
Abstract
SPRINGER
Description
Keywords
This study aims to find which lattice type and which ingredient is the best for the bone lattice for future grafting operations. Four types of lattice parts with micro and high porosity were designed to resemble the human bone structure and reach its light-weight and high surface area properties. Hydroxyapatite (HA) and tricalcium phosphate (TCP) were used in the photopolymer resin mixture for (Digital Light Processing) DLP 3D printing to give high bioactivity capability to the parts. In conclusion, microporosity HA- and TCP-doped parts were printed successfully with the DLP technique. Bioactivity tests were carried out with parts that were soaked in simulated body fluid (SBF). There is no significant weight difference in lattice parts in the time. Four weeks are sufficient time for the test. End of 2 weeks, calcium phosphate particles with around a diameter of 50-75 mu m, and end of 4 weeks, calcium phosphate particles with around a diameter of 80-225 mu m were observed. Apatite precipitation areas were grown on the surface in time. SEM and XRD results indicate that HA-doped and TCP-doped specimens are bioactive. A more mass increase was observed in the HA-doped specimen compared to the TCP-doped specimen.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/7374
Collections
Web of Science Koleksiyonu
Full item page