Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Bagdatli, SM
Özkaya, E
Öz, HR
Journal Title
Journal ISSN
Volume Title
Publisher
1048-9002
Abstract
ASME
Description
Keywords
The transverse vibrations of an axially accelerating Euler-Bernoulli beam resting on simple supports are investigated. The supports are at the ends, and there is a support in between. The axial velocity is a sinusoidal function of time varying about a constant mean speed. Since the supports are immovable, the beam neutral axis is stretched during the motion, and hence, nonlinear terms are introduced to the equations of motion. Approximate analytical solutions are obtained using the method of multiple scales. Natural frequencies are obtained for different locations of the support other than end supports. The effect of nonlinear terms on natural frequency is calculated for different parameters. Principal parametric resonance occurs when the velocity fluctuation frequency is equal to approximately twice of natural frequency. By performing stability analysis of solutions, approximate stable and unstable regions were identified. Effects of axial velocity and location of intermediate support on the stability regions have been investigated. [DOI: 10.1115/1.4003205]
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6856
Collections
Web of Science Koleksiyonu
Full item page