LOCALLY AND WEAKLY CONTRACTIVE PRINCIPLE IN BIPOLAR METRIC SPACES

dc.contributor.authorMutlu, A
dc.contributor.authorÖzkan, K
dc.contributor.authorGürdal, U
dc.date.accessioned2024-07-18T11:53:49Z
dc.date.available2024-07-18T11:53:49Z
dc.description.abstractIn this article, we introduce concepts of (epsilon, lambda)-uniformly locally contractive and weakly contractive mappings, which are generalizations of Banach contraction mapping, in bipolar metric spaces. Also, we express the results showing the existence and uniqueness of fixed point for these mappings.
dc.identifier.issn2146-1147
dc.identifier.urihttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/5893
dc.language.isoEnglish
dc.publisherTURKIC WORLD MATHEMATICAL SOC
dc.subjectTHEOREM
dc.titleLOCALLY AND WEAKLY CONTRACTIVE PRINCIPLE IN BIPOLAR METRIC SPACES
dc.typeArticle

Files