Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Deniz, I
Demirel, Z
Imamoglu, E
Conk-Dalay, M
Journal Title
Journal ISSN
Volume Title
Publisher
0025-3154
Abstract
CAMBRIDGE UNIV PRESS
Description
Keywords
Maintenance of eukaryotic microalgae strains for the long term is generally carried out using serial subculture techniques which require labour, time and cost. Cryopreservation techniques provide long-term storage of up to years for numerous microorganism strains and cell cultures. Ssu930ijn vbvbhnn8;l,n is related to a successfully designed mass and heat transfer balance throughout the cell. In this study, optimization of the cryopreservation process was carried out for two commercially used microalgal strains. The parameters to be optimized were DMSO percentage (0-25%), incubation time (1-15 min) and cryopreservation term (7-180 days) using a central composite design (CCD). Long-term storage up to 123.17 and 111.44 days corresponding to high cell viabilities was achieved for Chlorella vulgaris and Neochloris texensis, respectively. Generated models were found to be in good agreement with experimental results. The study also revealed holistic results for storage of microalgal strains in a stable state for industrial applications.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6753
Collections
Web of Science Koleksiyonu
Full item page