Skip to main content
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
All Contents
Statistics
English
Català
Čeština
Deutsch
Español
Français
Gàidhlig
Italiano
Latviešu
Magyar
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Suomi
Svenska
Türkçe
Tiếng Việt
Қазақ
বাংলা
हिंदी
Ελληνικά
Српски
Yкраї́нська
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
Araştırma Çıktıları | Web Of Science
Web of Science Koleksiyonu
English
English
No Thumbnail Available
Date
Authors
Bacak-Turan, G
Kirlangic, A
Journal Title
Journal ISSN
Volume Title
Publisher
0129-0541
Abstract
WORLD SCIENTIFIC PUBL CO PTE LTD
Description
Keywords
In a communication network, the vulnerability measures are essential to guide the designer in choosing an appropriate topology. They measure the stability of the network to disruption of operation after the failure of certain stations or communication links. If a station or operative is captured in a spy network, then the adjacent stations will be betrayed and are therefore useless in the whole network. In this sense, Margaret B. Cozzens and Shu-Shih Y. Wu modeled a spy network as a graph and then defined the neighbor integrity of a graph to obtain the vulnerability of a spy network [10]. The neighbor integrity of a graph G, is defined to be NI(G) = min(S subset of V(G)) {vertical bar S vertical bar + c(G/S)}, where S is any vertex subversion strategy of G and c(G/S) is the maximum order of the components of G/S. In this paper, we investigate the transformation graphs G(-+-), G(+--), G(++-), G(---), G(+-+), G(-++), G(--+) and G(+++) of a graph G, and determine their neighbor integrity.
Citation
URI
http://akademikarsiv.cbu.edu.tr:4000/handle/123456789/6851
Collections
Web of Science Koleksiyonu
Full item page