FABRICATION AND CHARACTERIZATION OF NANOCLAY-REINFORCED THERMOPLASTIC COMPOSITE FILMS
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
A number of nanoclay/poly(methyl methacrylate) (PMMA) composite films were prepared with three different clay concentrations (0.5 %, 1 % and 2 % (w/%)) via a solution-casting process. The nanoclay was modified by applying different compatibilization techniques: mere silane surface treatment and surfactant application with the addition of a silane agent. The interlayer distances of the clay galleries were determined using X-ray diffraction (XRD) and the modifications were verified with Fourier-transform infrared spectroscopy (FTIR) analysis. The dynamic mechanical analyses (DMA) were performed to clarify the viscoelastic properties of the produced films. Morphological characterizations were carried out with a scanning electron microscope (SEM). The neat clay/PMMA composites and pure PMMA film were also used to compare the effects of the compatibilization methods. The silane-modified clay/PMMA composites exhibited the best performance, as compared to neat PMMA, by considering the storage modulus (17.7 % increase) and the glass-transition temperature (20 % increase). However, in terms of the dynamic mechanical properties, the joint implementation of these two modification techniques did not satisfy the expectations, probably due to the excess modifier and the plasticizing effect.